Universidad Politécnica de Cartagena Departament of Electrical Engineering

Doctoral Course on "Industrial Technologies".

Subprogram "Neurotech, Control, Robotics and Energy Management"

Analysis of Distributed Energy Resources: an Introduction to Demand Response

Lesson 3. Demand Response from 1973 to 2000

- DSM, Demand Side Management
- LM, Load Management
- EC, Energy Conservation

Regulation: vertically integrated utilities.

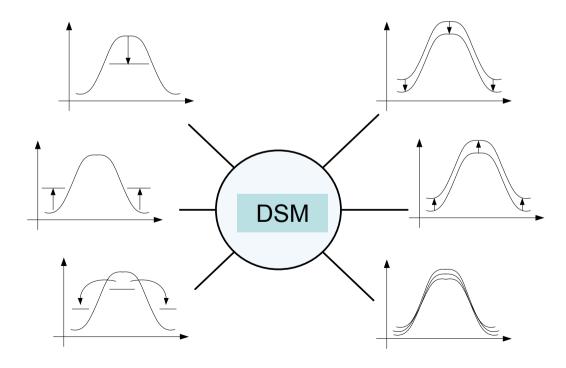
Until the 70's: Policies SSM (Supply Side Management)

The power system grows following the changes in demand (peaks).

From 1973 the DSM comes. Drivers:

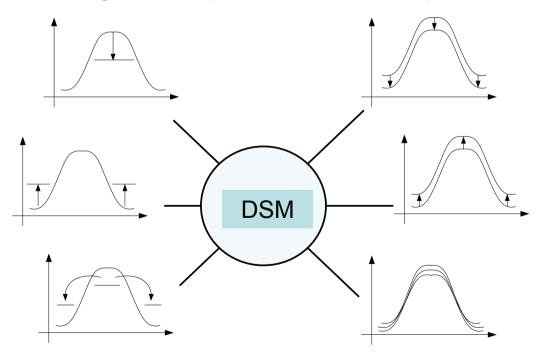
- Δ Oil prices (production costs)
- ↑ rates of inflation (double digits)
- price of money (two digits), it triggers the economic cost of new investments

A change in the background:


- Planning processes (uncertainty large investments)
- Change in the regulation of Power Systems
- A new interest in Energy Efficiency and Conservation
- Users viewpoint: to control its energy costs (mainly in the industry segments)

Demand-Side Management (DSM)

- Concept (C.W. Gellings, EPRI, 1981)
 - To change the electricity use patterns (directly or stimulated by the utility)
 - To modify the load curve (time, values)


→ according to the <u>utility needs</u>

Demand-Side Management (DSM)

- These activities include:
 - Load Management (the shifting of Load from high cost to lower cost periods)
 - Strategic Conservation (reductions in usage)
 - Electrification (replacement of primary supply, ex. Gas)
 - Strategic Growth (increase market share)

- The DSM includes critical components of the traditional planning of the company:
 - Influencing the use of electricity (customers)
 - Should provide user response
- Additional objectives include:
 - Reductions / new tariffs
 - Customer satisfaction
 - Increased network reliability
 - The SSM is no longer the only alternative
- May be compared with alternative policies (DSM) that can achieve similar goals.
- **▶** The DSM is influenced by the shape of the load curve (transformer, feeder, substation, ...)
- DSM achieves a considerable success from 1980-95

II. DEMAND PARTICIPATION IN REGULATED ENVIRONMENTS

Block 3

Environmental considerations. History repeats itself

- Very important since 1980
 - Ex. Nuclear Energy (Three Mile Island, June 79)
 - Climate change (greenhouse effect)
 - Acid rain (conventional units)
- Environmental assessment: It is very complicated. Many companies and governments try to include it in their planning processes.
 - Northwest Power (USA) -10% for conservation
 - ▶ California: [10%, 25%] in generation projects
- Explicit monetization: allocating costs associated with each impact (impact mitigation)
 - NOx: 22000 \$ / ton emitted
 - SOx: 16000 \$ / ton emitted
 - **Solution CO:** \$ 300 / ton

Clean Air Act (USA, 1990)

- The regulation of emissions appears.
- Emission rights: offers and bids

II. DEMAND PARTICIPATION IN REGULATED ENVIRONMENTS

Block 3

DSM Drivers (I)

Positive effects

- New devices and technologies
 - Saving capacity (100% from 1980 to 1990)
 - ▶ Lower costs (electronic components, PC, controls,...)
 - Between 25% to 50% could be saved if the best technology available is applied
 - Sometimes, this technology is very expensive and unrealistic
- EPRI forecasts (1990, USA)
 - Residential segments (27 to 46% savings): conditioners, water heaters, lighting
 - Commercial sector (23 to 49% savings): lighting, refrigeration, office equipment
 - Industry: (24% to 49%): electronic drives (more than 70% of consumption is due to other
- Other alternatives: the replacement of primary sources. Replacing gas or oil supply. Estimated savings:
 - \blacksquare Industry: 407x10¹² BTU (1 BTU = 1054kJ)

DSM Drivers (II)

- Negative effects
 - Sales policies and incentives to purchase efficient appliances:
 - Sometimes, they were higher than the cost of the appliance (ex. Residential heat storage in Spain, 90's) and independent of rated power and efficiency.
 - They were not "socially" efficient
 - They don't produce change in patterns
 - Alternative: To improve standards (source: NAECA)
 - Example: Fridges and Air Conditioning in Residential segments

Appliance	1990 Standard	1993-95 Standard	2004-06 Standard				
Refrigerator	1013 kWh/year	730 kWh/año	620 kWh/year				
Freezers	1100 kWh/year	835 kWh/año	-				
Central Air Contitioner (split)	None (Avg: SEER 9)	10 SEER	(proposal) 13 SEER				

Regulatory changes (80's): Least cost planning (LCP)

- Definition (R. Sants & A. Lovins, 1979): find the maximum efficiency/conservation potential with technologies that are competitive.
- The process: (can be useful to evaluate the response of demand, there are important similarities)
 - Understand how energy is used
 - Identify the existing technical potential
 - Assess costs and benefits to society
 - Find the optimum to minimize costs and maximize the social benefit
- LCP problems
 - User viewpoint: no equity.
 - Policies can be beneficial only for one party (participant)
 - Utility viewpoint: The LCP is contrary to the expansion and competitiveness What about network reliability?
- At the beginning, no one considers the load control

- Regulation (late 80's): Integrated Resource Planning (IRP)
 - Concept (Schweppe, 1989): to integrate LCP and DSM
 - The new planning portfolio

Energy Efficiency		Load Response		DG (renewable)		DG (conventional)			Energy Storage		Gen						
Tecnolo gía Pred	cio portamien to	Control directo (DLC) Tarifas (ToU)		nico	Solar E6	ólica Min dráu		กลรล	Turb	F	uel ells genera	ción	SM SC		rcia	Núc Fuel	bón elear I-Oil as
DSM policies				SSM policies													

Т

Some benefits of DSM experience:

- There are more data and consequently problems can best be studied.
- Prevent missed opportunities
- Establish incentives
- Examples of individual cases
- Make it easier to share user
- "Markets" are underexploited: commercial and industrial
- ► The residential market is a problem (in USA and other countries) because he was the one who had more experience in DSM, and this experience usually was not positive:
 - Low service levels (large interruptions)
 - Low feedback to customers (value of customer participation)
 - I.e. A lack of customer satisfaction with conventional DSM

Weakness of DSM policies (1995-2000):

- Influenced by several factors:
 - Comfort: 90% of users (commercial and institutional customer) considered a serious drawback to reduce demand.
 - Outdated policies: Demand-Side is driven by the Supply Side
 - User Rating: More interested in EMS systems
 - Looking for information on energy use and operation of new technologies
- Lack of interest of the regulator: it focuses on other goals (new "deregulated" markets).

